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a b s t r a c t

Research works are ongoing in mixing the biologically synthesized oil with the diesel for reducing the
effect of global warming and climate change. From the review study, it is noted that the blended bio-
diesels require more assert about their practical viability. So, the non-edible Tamanu oil is synthesized
and it is blended with diesel and its emission characteristics, engine performance and combustion
characteristics are studied in our previous work. This paper attempts to model the diesel engine fueled
with tamanu oil biodiesel blend. The proposed model exploits the context of neural network and the
firefly algorithm is used to train it. After analyzing the various characteristics of the diesel engine, the
acquired data is subjected to a proposed FF-NM method. The simulated results are statistically evaluated
and the proposed modeling method is proved to be better than the other NM.

© 2018 Published by Elsevier Ltd.
1. Introduction

Gradual reduction of the crude oil and the recent climatic
changes paves the way for the identification of any other fuels.
Specifically, in recent years, the biofuels are considered most
because of its renewable capacity. The environment gets polluted
due to the emission of GHG and other toxic gases from the diesel
engine of vehicles. Researchers paid attention to minimize the
emission of poisonous gases that cause lot of side effects and
developed new methodologies.

Biodiesel is a nontoxic and biodegradable fatty acid methyl ester
[11]. It is obtained from the renewable resource and it is completely
a nonconventional fuel with no petroleum components and it is
synthesized from the vegetable oil or waste greases or animal fats
or feed stocks having triglycerides using the process of trans-
esterification [13,16]. The oils from the plants and animals are
either edible or non-edible and the edible oils are less used for the
biodiesel production because of the high price of an edible oil
[12,17] [18]. So, the non-edible oils are used for the synthesis of
biodiesel and it is used as a fuel in the diesel engine. One such non-
edible oil is the TO, obtained from the Calophyllum inophyllum seeds
that are frequently seen in the tropical areas. The unrefined TO
om (Y. K.S.S Rao),
consist of about 22% FFA [14] and this low amount of free fatty acids
is a good property for the production of biodiesel because high
amount of FFA lead to the generation of soap with addition of
alkaline catalyst [15]. The steps involved in the production of bio-
diesel are pretreatment, acid-catalysed esterification and acid cat-
alysed alkylation. The produced biodiesel is blended with the pure
diesel for its use in engine to reduce the emissions of the GHG [6].
The blended form of biodiesel is supplied to the engine and trialled
at varied compression ratios in a diesel engine and the output is
evaluated by analysing the characteristics of the combustion, per-
formance and emission in the engine. The property of inferior
oxidative and the storage stability [19,20] are the limitations of the
use of biodiesel.

Themain contribution of this paper is tomodel the diesel engine
with blended fuels like tamanu oil and biodiesel in order to reduce
the effect of global warming and climate change. The proposed
model utilizes the context of neural network and the firefly algo-
rithm is exploited to train it. After analyzing the various charac-
teristics and features of the diesel engine, the data is presented to a
proposed FF-NM method.
2. Literature review

2.1. Tamanu oil based biodiesel blends

In 2011, Selvebala et al. [7] applied the response surface

mailto:subbaraoyks123@gmail.com
mailto:balakrishnajntu06@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.renene.2018.08.091&domain=pdf
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene
https://doi.org/10.1016/j.renene.2018.08.091
https://doi.org/10.1016/j.renene.2018.08.091
https://doi.org/10.1016/j.renene.2018.08.091


Abbreviation description

FF-NM Firefly-neural model
GHG Green house gases
TO Tamanu oil
FFA free fatty acid
NLARX The non-linear autoregressive exogenous input
MSE The Mean square error
CR Compression Ratio
BMEP Brake Mean Effective Pressure
IP Induction Point
IMEP Indicated Mean Effective Pressure
SFC specific fuel consumption
BP Brake Power
AF ratio Air Fuel ratio
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Fig. 2. Architecture of nonlinear autoregressive neural model.

Table 1
Engine specifications.

Particulars Specifications

Engine make Kirloskar TV-1
Number of cylinder Single
Number of stroke Four
Bore and Stroke length 87.5mm and 110mm
Power and speed 3.5 kW and 1500 rpm
Compression ratio Varying range of 15, 16, 17 and 17.5
Swept volume 661.45 cc
Connecting rod length 1mm
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methodology and the central composite design for identification of
the optimized process of operation in the pre-treatment step and
they optimized the process of pre-treatment in beta-zeolite
modification in acid. In 2014, Gnanomoorthi and Devaradjane [4]
utilized the ethanol blended diesel oil by adding 1% Diethyl Car-
bonate and 1% ethyl Acetate as the biofuel for the experimental
study and evaluated the combustion, emission and the perfor-
mance in four stroke, one cylinder, direct injection aspirated diesel
engine with varied compression ratios. Fattah et al. [8] studied the
emission and performance in a four cylinder diesel engine with the
TO that is subjected to esterification process with the addition of
Potassium Hydroxide, Sulphuric acid and antioxidants. The results
showed the efficiency of the developed blend ratio with reduction
in brake specific fuel and increase in brake power.

In 2015, Kumar et al. [6] have worked on the esterified pinnai oil
and studied the performance and the emission characteristics with
varied compression ratios in a diesel engine. They specifically
considered various parameters such as temperature, time, pH, the
amount of catalyst added is considered with respect to the pro-
duction of biodiesel and the brake specific energy consumption,
brake thermal efficiency, combustion duration, ignition delay and
exhaust gas temperature is considered in studying the efficiency of
the proposed blend ratios in a diesel engine. Bapu et al. [9]
Diesel engine
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Fig. 1. Procedure to model a diesel engine for its
concentrated on the problem of emission of gases such as Carbon
monoxide, hydrocarbon and smoke and so, done the experiment
with mixed methyl ester of TO with diesel. The experiment is car-
ried out in one cylinder with varied compression ratios and
modified hemispherical combustion chamber. The simulation ex-
periments are done using the Ansys Fluent software. Muthuku-
maran et al. [10] synthesized the Calophyllum inophyllum oil in
modified form with the addition of catalyst e raw fly ash and had
done the experiment in a diesel engine with one cylinder. The
modified form of the TO is characterized using the techniques such
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as scanning electron microscopy and Electron dispersive x-ray
spectroscopy and also, analysed the effects of the blended oil with
the emission and performance of the diesel engine.
2.2. Other biodiesel blends

In 2015, Nagaraja et al. [3] blended the diesel with the pre-
heated palm oil and experimentally worked out the effects of the
blended oil with diesel engine considering the different compres-
sion ratios, the emission and the performance characteristics. The
palm oil is subjected to 90 �C before the blending process and the
parameters used for the simulation study includes the mechanical
efficiency, brake power, and indicated mean effective pressure.
From the results obtained, it was found that the emission of carbon
monoxide and hydrocarbon is highly reduced with increased blend
Table 2
Weight ðuÞ of NM and FF-NM for CO, HC, CO2, O2 and NOX.

Weight u CO HC CO2

NN FF-NM NN FF-NM NN

1 �2.9439 4.6659 1.5326 0.64758 2.5904
2 �4.2811 2.0771 9.2872 �2.6684 �0.56686
3 1.4915 2.509 0.073924 �9.3876 0.31501
4 0.68465 1.0443 2.7027 �1.7075 5.1889
5 �1.7296 �0.54878 �1.1166 0.72636 6.8843
6 0.46546 �0.10591 �3.9051 0.81367 �3.2999
7 1.0801 �1.7166 0.71614 0.5738 3.2308
8 0.62571 �2.0788 2.727 �8.208 �5.9361
9 3.2425 �2.6149 2.0611 0.85462 0.17337
10 �2.6867 �3.0931 0.98328 �5.2515 �3.6781
11 1.1129 0.23314 �1.1945 �0.037154 0.47571
12 0.021546 �1.7865 0.5559 �1.8608 0.12827
13 0.92041 �1.1697 �0.50454 �0.98055 0.097213
14 �0.78027 �2.4808 0.1432 �0.69313 0.38786
15 1.8761 �0.44422 0.2545 �0.89935 �0.2813
16 �0.58158 1.1904 �0.23117 0.10227 �0.50085
17 1.1061 �0.75392 0.39499 0.19118 �0.56951
18 �0.4063 �1.6262 0.036618 �0.84285 �0.36757
19 0.15544 �0.44182 �0.18183 �1.8477 �0.1168
20 �2.3155 �2.8022 0.02392 �1.2639 �0.47239
21 1.3533 �2.8609 2.3424 �0.87046 2.9383
22 2.7862 �0.6914 �5.4342 1.0999 �0.56496
23 �0.36844 �0.68055 �0.3585 4.2206 0.56326
24 �2.0641 0.97168 �3.6141 1.259 �5.9828
25 �0.6982 0.28127 �2.0368 1.1575 �7.2729
26 1.2964 �1.1679 5.9054 �2.0979 1.9917
27 0.63488 �2.6247 1.6861 1.0317 �4.0305
28 1.5335 �1.0142 �3.1432 2.8946 7.7128
29 �2.681 �1.3669 2.5044 0.79511 0.048228
30 1.2481 �0.089864 2.761 7.1909 3.241
31 3.0007 2.0796 �1.6486 �0.20779 �0.06539
32 �2.0693 1.5221 3.6329 �2.665 �0.26531
33 2.9193 2.8576 �0.87234 �6.5784 �0.30915
34 1.575 �0.98907 0.44871 1.6112 0.96626
35 �0.23565 �1.6654 0.27142 �1.0985 0.25192
36 0.6701 �2.4947 �0.79711 0.015657 �2.4307
37 �2.6841 �0.86269 0.64223 �0.041489 0.018311
38 �2.6224 1.4637 �0.21881 �5.722 �0.34252
39 2.029 �2.4147 �0.41134 �2.615 0.32455
40 1.6538 0.67353 �0.13685 �3.5102 �1.3031
41 0.83268 1.2162 4.3089 2.7645 �4.3718
42 �1.2646 �1.6853 �3.085 4.4731 3.8726
43 2.6594 0.62306 �6.6147 0.022442 �5.1786
44 0.9471 �0.61632 0.97496 �1.7814 �4.572
45 0.1536 0.14657 �2.831 0.027803 �13.706
46 �0.14102 �0.98434 �12.409 3.5996 8.1829
47 0.35771 0.067285 �0.9391 �1.2914 1.6255
48 �0.02671 �0.24414 �4.3167 �2.3254 3.0213
49 �0.10528 0.2806 4.2933 6.514 �3.0278
50 1.0767 0.060871 �3.0044 �1.5347 �7.1889
51 �0.083673 �0.072467 �3.0468 �0.06691 8.8013
52 �2.9439 4.6659 1.5326 0.64758 2.5904
ratio and compression ratio. Senthil et al. [5] estimated the various
effects of using Annona methyl ester as fuel in the diesel engine
efficiency with varied compression ratios and considering param-
eters such as brake thermal efficiency, fuel injection timing and
emission of carbon monoxide and hydrocarbon. In 2016, Bora and
Saha [1] used the rice bran oil and blended with the diesel oil and
studied the effect of this blended oil on the performance, emission
and combustion characteristics in a diesel engine that is with
biogas. So, the dual fuel run diesel engine consisting of one cylinder,
naturally aspirated, water cooled, direct injection engine is runwith
selected compression ratios and the parameters such as maximum
liquid replacement and the brake thermal efficiency are used as the
measure for analysing the engine efficiency. Bora and Saha [2] have
worked on the biogas run dual fuel diesel engine and introduced an
optimization process for the pilot fuel injection timing and the
O2 NOx

FF-NM NN FF-NM NN FF-NM

�2.1046 0.9366 2.4074 0.9366 2.4074
�2.7368 �1.7816 0.017706 �1.7816 0.017706
5.5258 4.678 8.339 4.678 8.339
5.8095 1.8042 0.76649 1.8042 0.76649
�6.7549 �1.0087 3.4243 �1.0087 3.4243
0.66171 �0.8304 0.29871 �0.8304 0.29871
�1.4759 2.9007 �3.6686 2.9007 �3.6686
4.6628 �2.2933 0.26886 �2.2933 0.26886
11.328 6.0863 �2.3034 6.0863 �2.3034
�2.3815 �4.6223 2.6164 �4.6223 2.6164
0.23307 0.11478 �0.21293 0.11478 �0.21293
0.77734 �0.16504 �0.053749 �0.16504 �0.053749
0.096377 �0.13686 �3.5442 �0.13686 �3.5442
�0.28529 �0.0061194 �0.23846 �0.0061194 �0.23846
3.1199 �0.069643 �0.4518 �0.069643 �0.4518
1.4482 �0.093121 �0.37314 �0.093121 �0.37314
�0.4149 �0.010368 0.42048 �0.010368 0.42048
�2.4917 �0.063388 0.42186 �0.063388 0.42186
1.5093 �0.28183 �0.48323 �0.28183 �0.48323
�2.8531 0.30093 0.91599 0.30093 0.91599
�0.40408 1.0878 1.8898 1.0878 1.8898
�0.76099 �2.0416 1.0516 �2.0416 1.0516
�5.6874 �5.8846 �4.6708 �5.8846 �4.6708
�5.7206 �2.729 1.6799 �2.729 1.6799
0.91556 1.0156 �5.5292 1.0156 �5.5292
�0.79808 2.548 �1.5259 2.548 �1.5259
0.30224 �4.685 5.9836 �4.685 5.9836
�3.0536 4.3011 �1.5771 4.3011 �1.5771
�13.051 �7.6171 1.9756 �7.6171 1.9756
�0.31536 3.9511 �1.7115 3.9511 �1.7115

3 �1.9947 0.076742 �1.3179 0.076742 �1.3179
�5.301 0.20863 0.031811 0.20863 0.031811
1.4715 0.16375 6.3604 0.16375 6.3604
0.47093 0.036481 �0.45552 0.036481 �0.45552
9.8167 0.25749 �1.5511 0.25749 �1.5511
�0.79777 �0.20305 0.1698 �0.20305 0.1698
�0.12619 0.75777 1.8565 0.75777 1.8565
�6.7687 0.17182 �1.3109 0.17182 �1.3109
2.0907 0.61904 0.26097 0.61904 0.26097
1.0064 �0.25242 �0.67582 �0.25242 �0.67582
�5.9488 �1.5546 1.0764 �1.5546 1.0764
�0.51746 3.9384 �0.44854 3.9384 �0.44854
�0.10657 1.7879 3.9463 1.7879 3.9463
�7.5072 �9.0779 �2.9777 �9.0779 �2.9777
10.545 26.151 �1.1336 26.151 �1.1336
�0.15265 �8.0679 2.4135 �8.0679 2.4135
�0.23453 8.0483 0.75024 8.0483 0.75024
�3.9789 �2.2864 2.0894 �2.2864 2.0894
�0.38652 7.5871 0.46231 7.5871 0.46231
�1.0324 2.9055 �3.7307 2.9055 �3.7307
0.090339 8.1638 �0.83498 8.1638 �0.83498
�2.1046 0.9366 2.4074 0.9366 2.4074



Table 3
MSE between the actual and predicted engine performance of the diesel engine fueled with tamanu oil blend.

Parameters (units) CR15 CR16 CR17 CR17.5

NM FF-NM NM FF-NM NM FF-NM NM FF-NM

Torque (N.m) 2.44 1.12 1.92 1.30 1.56 0.62 2.41 0.0070
BP(Kg/kW.s) 0.00044 4.6062e-05 0.00041 5.3657e-05 0.022 0.020 0.0077 0.016
IP(kW) 1.12 0.37 0.32 0.06 0.40 0.11 5.16 2.14
BMEP(N/m2) 0.02 0.0027 0.06 0.0035 0.04 0.02 0.014 0.0039
IMEP(N/m2) 9.95 4.65 1.08 0.59 0.059 0.01 1.50 1.01
BTHE (W.s/J) 0.20 0.18 1.06 0.043 4.21 3.71 0.054 0.027
ITHE (W.s/J) 1794.2 1046.8 406.65 29.04 52.59 32.70 127.51 117.72
Mechanical efficiency 37.03 25.25 222.15 38.38 410.83 20.006 351.95 159.06
Air flow (Kg/s) 0.097 0.023 0.04 0.0052 0.0091 0.0078 0.044 0.00066
Fuel flow (Kg/s) 0.00027 0.00020 0.00030 2.1947e-05 0.0023 0.00030 0.00021 0.00016
SFC(Kg/J) 0.24 0.12 0.024 0.013 0.15 0.05 0.08 0.010
Volume efficiency (1/rev) 0.069 0.0031 0.0043 0.0023 0.095 0.039 0.06 0.05
AF ratio 31.68 21.42 42.13 14.85 448.86 96.97 127.33 8.5
HBP (%) 0.22 0.16 1.78 0.29 2.37 2.29 0.084 0.032
HJ (%) 4.72 2.88 16.02 307.01 252.34 741.93 3.23 11.47
HGas (%) 0.80 0.50 6.32 1.59 4.90 1.91 2.45 1.40
HRad (%) 18.51 2.651 25.43 21.32 229.18 85.45 33.65 20.37
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compression ratios. They proposed this optimization method to
overcome the odd effect of the engine and the surroundings and
the method shows very less emission of the carbon monoxide and
the hydrocarbons.
3. Modeling of diesel engine

3.1. System model

The schematic representation of the system model is shown in
Fig.1. The blended fuel-TO-diesel oil is supplied to the Kirloskar SV1
model diesel engine having water cooled, directly injected, four
stroke one cylinder. The engine works at a speed of 1500 rpm and
generates a power of 5.2 kW. The systemmodel also consists of the
emission gas analyzer and the combustion analysis systems for
analysing the emission of gases CO, CO2, O2, NOx, HC and for ana-
lysing the specific gas constant, air density, adiabatic index, cylin-
der pressure, polytrophic index respectively. The analysed data are
read and recorded in O/P reading measurements. The data is
collected and it is subjected to the model learning algorithm
through the neural model and the model predicts the combustion
characteristics, emission performance and the engine performance.
3.2. Autoregressive neural model

NLARX [25] model structure is one of the commonly used ar-
chitecture style and its structure is depicted in Fig. 2.

Let XðkÞ be the inputs and YðkÞ be the outputs and the NLARX
model can be represented as:

YðkÞ ¼ FðYðk� 1Þ; :::;Yðk� NÞ;XðkÞ; :::Xðk�M ¼ 1ÞÞ (1)

where, N and M represents the number of past output terms and
input terms respectively that are used for predicting the current
output. The generated outputs from the NLARX model are the
conversion of the earlier inputs and outputs, which are actually the
regressor functions having two types of blocks-linear and nonlinear
block. The conventional regressors are due to the delayed output or
input variables but, the advanced regressors exist in the arbitrary
user defined function form of delayed output and input variables.
So, the problem in NLARX model training can be a non linear un-
constrained optimization issue and it is given as
min
u

eðu; zTÞ ¼
1
2T

XT

t¼1

����YtðkÞ � Yt
∧
ðkjuÞ

����
2

(2)

where, ZT ¼ ½YtðkÞ;XðkÞ�k ¼ 1;:::::;T , YtðkÞ, YtðkÞ, Yt
∧
ðkjuÞ, uðu ¼ ½u1;

:::;ui;:::;up�Þ, k � k2 and p represents the training data set, the output
which is measured in the training set, output of NLARX, vector
parameter, 2 norm operation and number of parameters respec-
tively. In the neural network given in equation (1), there exists a,
errormetric called as the performance index of the equation (2) and
it is important to minimize this index to overcome the metric error.
The index also shows the network approximation to some given
training patterns and the network parameters u have to be modi-
fied to minimize the index eðu; zT Þ above the complete trajectory
for obtaining the less value.

The model parameters given in the Table 2 represents the
optimal weights of the NLARXmodel, which can correlate precisely
with the experimental data. These weights are adopted as 'omega'
in the model, which is given in eqs. (3) and (4), where b and c in-
dicates the value 1.

YKðu ¼ 1ju< iÞ ¼ sigm
�
bi þ

�
WT

�
i
� hi

�
(3)

hi ¼ sigmðcþW< iu< iÞ (4)
3.3. Firefly algorithm based learning process

FA [21,22,24]is proposed in 2007e2008 based on the behaviour
and flashing patterns of the fireflies by Xin-She Yang at Cambridge
University. It follows three rules, (1) With respect to the sex, the
fireflies are unisex and so, one firefly will attract the other firefly,
(2) The amount of attractiveness is proportional to the amount of
brightness and automatically, the brightness and attractiveness
decrease with respect to the distance and among the two flashing
fireflies, the brightness less firefly move towards the more bright-
ness firefly. In absence of a brighter firefly, they start the random
move and (3) the landscape of the objective function determines
the fireflies' brightness.

Since, the attractiveness of the firefly is proportional to the in-
tensity of the light viewed by the nearby fireflies, the change in
attractiveness expressed in b in distance r, is given as



(a) (b)

(c) (d)

(e) (f)
Fig. 3. Effect of compression ratio and blend ratio on the combustion characteristics of the diesel engine.
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b ¼ b0e
�gr2 (5)

where, b0 represents the attractiveness at r ¼ 0. If the firefly i
which is in movement is attracted to the brighter firefly j, then

xtþ1
i ¼ xti þ b0e

�gr2ij
�
xtj � xti

�
þ at2

t
i (6)

where, the second term is because of the attraction among the
fireflies and the third term is in randomization with at , where, at is
the parameter for randomization and 2t

i represents the randomly
selected numbers using the Gaussian or uniform distribution at a
time period t. The simple randomwalkmay occur, when b0 ¼ 0 and
when g ¼ 0, it gets minimized to a variant of Particle Swarm
Optimization [21]. In addition to this, the 2t

i randomization will
move towards the other distribution like Levy flights [21].
4. Experimental setup

4.1. Procedure

The experiment involves the use of one diesel engine supplied
with the TO-diesel oil blends with varied compression ratios-15,16,
17 and 17.5. The selected blend ratio (TO: diesel) are 5:95, 6:94, 7:



(a) (b)

(c) (d)

Fig. 4. Statistical interpolation of miniature blends for CO2 under varying compression ratio of (a) 15, (b) 16, (c) 17, (d) 17.5.

(a) (b)

(c) (d)
Fig. 5. Statistical interpolation of miniature blends for HC under varying compression ratios of (a) 15, (b) 16, (c) 17, (d) 17.5.



(a) (b)

(c) (d)
Fig. 6. Statistical interpolation of miniature blends for CO under varying compression ratios of (a) 15, (b) 16, (c) 17, (d) 17.5.

(a) (b)

(c) (d)
Fig. 7. Statistical interpolation of miniature blends for O2 under varying compression ratios of (a) 15, (b) 16, (c) 17 (d) 17.5.



(a) (b)

(c) (d)
Fig. 8. Statistical interpolation of miniature blends for NOx under varying compression ratios of (a) 15, (b) 16, (c) 17, (d) 17.5.

(a) (b)

(c) (d)
Fig. 9. Absolute deviation of miniature blends of CO2 for the proposed FF-NM method over NM method under varying compression ratios of (a) 15, (b) 16, (c) 17, (d) 17.5.



(a) (b)

(c) (d)
Fig. 10. Absolute deviation of miniature blends of HC for the proposed FF-NM method over NM method under varying compression ratios of (a) 15, (b) 16, (c) 17, (d) 17.5.
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93, 8:92, 9:91, and 10:90 and all the parametric measures, the
performance and the emission values are recorded. The acquired
data is used to simulate the neural model - Levenberg Marquadt
[23] learning algorithm. This algorithm is a traditional one and it
has various limitations such as regularization problem and over-
fitting. So, a new neural model is proposed and it is trained by
recently introduced firefly algorithm. The experiments were carried
out and the results are tabulated and interpreted in the following
section. The specifications of the engine used for our experimental
study is cited in Table 1.

The MSE between actual and predicted engine performance of
the diesel engine with 6%, 7%, 8%, 9%, 10% TO blend with varied
compression ratio 15, 16, 17 and 17.5 is noted in Table 3. Various
parameters are considered for predicting the engine performance.
The parameters include Torque, BP, IP, BMEP, IMEP, BTHE, ITHE,
Mechanical efficiency, air flow, fuel flow, SFC, volume efficiency, AF-
ratio, HBP, HJW, HGas, and HRad. The MSE is determined between
the actual and the predicted outcome from NM and FF-NM
methods. The MSE of all the predicted parameters from FF-NM
model is relatively less even with variations of CRs and blend ra-
tios except the parameter BP at CR 17.5 and HJ at CR 16, 17, 17.5. The
increase in MSE than the NM cannot be significant because of such
negative deviation only at few instants and minimum deviation.
The best performance among the parameters for the proposed FF-
NM method is found to be the Torque at CR 17.5 having a MSE
deviation of 99.7% over NM. In themechanical efficiency parameter,
the MSE of FF-NM method deviates 82.7%, 95.13% and 54.8% over
existing NM method for the corresponding CR of 16, 17 and 17.5.

The combustion characteristics with respect to the different CRs
are evaluatedwith the TO-diesel blend 5% and 10%. The combustion
parameters like fuel line pressure, mass fraction burned, cylinder
pressure, net heat release, cumulative heat release and rate of
pressure rise are analysed using the combustion analysis software
and it is shown in Fig. 3. Fuel line pressure indicates the pressure of
the fuel measured at the fuel line in a given rated speed. Mass
fraction burned combustion parameter calculates from the per-
centage of fuel to be burned out of the total mass of fuel. Net heat
release parameter represents the volume of heat released during
the combustion of a specified amount of fuel and Rate of pressure
rise combustion parameter is defined as the expansion of high-
pressure gases produced by applying direct force to some compo-
nent of the engine. Other combustion parameters such as cumu-
lative heat release and cylinder pressure states the total energy
released as heat when a fuel undergoes complete combustion with
oxygen under standard conditions and the pressure in engine cyl-
inder during the 4 strokes of engine operation respectively.

In the initial phase of the blending, the pressure rate increases
because of themixed fuels intensity. When the CR is 17.5 and 17, the
rate of pressure is decreased and increased respectively with blend
ratio of 5:95. At zero degree crank angle and CR of 16 (for 5% TO), 17
(for 10% TO), 16 (for 10% TO), 15 (for 5% TO), and 17.5 (for 10% TO),
the pressure rate is calculated as 3.6, 3.3, 1.5, 2 and 3.2 respectively.
Negative peak arises for the rate of pressure parameter in all CRs
and it has no unit. The parametermass fraction burned is calculated
and for 10% blend with CR16, it is found to be higher at 150� crank
angle when compared with the other curves. At CR of 17.5 and
blend ratio 5:95, the fuel line pressure is more at pressure of
35 bars, that is very high than the fuel line pressure in CR 16. The
cylinder pressure is noted as 51 bar with a sharp peak at 25� crank
angle for CR 17.5 (in 5% TO-diesel blend) and 15. It is also found that



(a) (b)

(c) (d)
Fig. 12. Absolute deviation of miniature blends of NOx for the proposed FF-NM method over NM method under varying compression ratios of (a) 15, (b) 16, (c) 17, (d) 17.5.

(a) (b)

(c) (d)
Fig. 11. Absolute deviation of miniature blends of CO for the proposed FF-NM method over NM method under varying compression ratios of (a) 15, (b) 16, (c) 17, (d) 17.5.



(a) (b)

(c) (d)
Fig. 13. Absolute deviation of miniature blends of O2 for the proposed FF-NM method over NM method under varying compression ratios of (a) 15, (b) 16, (c) 17, (d) 17.5.
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the peak exists for all compression ratios. In CR15 with blend ratio
5:95, the cumulative heat release rate, calculated in kJ is more with
sharp peak. In addition, the net heat release rate is estimated in J/
deg at different CRs and the values are in peak at 18(at 0�), 18 (at
25�), 35 (at 0�), 33(at 0�), 30(at 0�), 25(at 50�), 18(at 0�), with CRs of
16(for 10% TO), 15(for 5% TO), 17(for 10% TO), 17(for 5% TO), 17.5(for
5% TO), 17.5(for 10% TO), and 15 (for 10% TO), respectively.
5. Model performance

The emission of CO2, CO, HC, O2 and NOx, when the TO-diesel
blends in the ratio of 6%, 7%, 8%, 9%, 10% at different CRs 15, 16,
17, 17.5 is analysed for the actual, NM and the FF-NM method and
they are graphically illustrated in Figs. 4e8 respectively. It is
noticed that in the CO2 emission analysis, as per Fig. 4, the FF-NM
curve shows 0.7%, 0.05% closer to the actual curve than the NM at
CR15 and 17.5 respectively, though the NM predicts the actual value
as close as possible.

In the analysis of CO emission, as given in Fig. 6, the FF-NM plot
shows 0.0125%, 0.01%, 0.01% and 0.01% closer than the NM at CR of
15, 16, 17 and 17.5 respectively. The estimated precision value of HC
emission, as given in Fig. 5, shows that the FF-NM almost estimates
the actual HC emission and it is closer than the estimation fromNM.
Such results can be observed for all the variants of CR, except 17.5.
Similarly in Fig. 7, where the estimation results of O2 emission is
presented, the deviation between the actual and the estimated
results from FF-NM lesser than the estimation from NM. Such
improvement of the FF-NM over NM has been reported as 25%, 10%,
10% and 8% for the CR of 15, 16, 17 and 17.5, respectively. The similar
kind of performance improvement has been exhibited by FF-NM in
estimating the NOx emissionwith no exemption on any variants, as
per Fig. 8.

The performance deviation of miniature blends of CO2, HC, CO,
NOx and O2 for the proposed FF-NM method over NM method
under the respective varying compression ratio of 15,16,17 and 17.5
are shown in Figs. 9e13 respectively. The average error deviation
performance of proposed FF-NM method on analysing different
emission gases is lesser than the NM method under varying
compression ratios except in a few instance of Fig. 9(b) and (c), 10
(a) and (d), 13 (a), (b) and (d) where it shows the maximum
average error deviation over NMmethod. Fig. 14 represents the real
experimental set up. Table 4 represents the computational
complexity of existing and proposed model.
6. Concluding remarks

In recent years, the biofuels are utilized mostly because of its
renewable capacity. The environment gets contaminated due to the
emission of GHG and other toxic gases from the diesel engine of
vehicles. Researchers put attention to minimize the release of
poisonous gases that cause lot of side effects to the environment
and developed new methodologies. The present paper addressed
the problems with respect to the use of conventional fuel-diesel
and introduced the Tamanu oil-diesel oil blend with different
compression ratios 15, 16, 17, 17.5 and blend ratios 5:95, 6:94, 7:93,
8:92, 9:91 and 10:90. A new modeling method called FF-NM is
proposed and the engine performance and emission analysis of the
TO-diesel oil blend has been evaluated and compared with the



Fig. 14. Real experimental set up.

Table 4
Computational complexity of existing and proposed model.

Model NM FF-NM

CR15 3.0333 1.3648
CR16 3.1235 1.2345
CR17 3.4567 1.2367
CR17.5 1.2467 1.6345
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actual and NM, which is our previous modeling technique, out-
comes. The MSE is determined for both the modeling methods and
they are found to be lesser for all the predicted parameters with
respect to varying blend ratios and CRs compared to the NM
method. The emission characteristics of CO2, CO, HC, NOx and O2 at
different CRs for the actual, NM and FF-NM have been calculated
with the selected blend ratios and it has been identified that the
estimation errors in FF-NMmethod of all GHG were lesser than the
NM method. The evaluated results show good performance of the
proposed FF-NM method.
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